Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Diesel Engine Noise Source Visualization with Wideband Acoustical Holography

2017-06-05
2017-01-1874
Wideband Acoustical Holography (WBH), which is a monopole-based, equivalent source procedure (J. Hald, “Wideband Acoustical Holography,” INTER-NOISE 2014), has proven to offer accurate noise source visualization results in experiments with a simple noise source: e.g., a loudspeaker (T. Shi, Y. Liu, J.S. Bolton, “The Use of Wideband Holography for Noise Source Visualization”, NOISE-CON 2016). From a previous study, it was found that the advantage of this procedure is the ability to optimize the solution in the case of an under-determined system: i.e., when the number of measurements is much smaller than the number of parameters that must be estimated in the model. In the present work, a diesel engine noise source was measured by using one set of measurements from a thirty-five channel combo-array placed in front of the engine.
Technical Paper

The Application of Acoustic Radiation Modes to Engine Oil Pan Design

2017-06-05
2017-01-1844
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
Technical Paper

Lean Breakthrough Phenomena Analysis for TWC OBD on a Natural Gas Engine using a Dual-Site Dynamic Oxygen Storage Capacity Model

2017-03-28
2017-01-0962
Oxygen storage capacity (OSC) is one of the most critical characteristics of a three-way catalyst (TWC) and is closely related to the catalyst aging and performance. In this study, a dynamic OSC model involving two oxygen storage sites with distinct kinetics was developed. The dual-site OSC model was validated on a bench reactor and a natural gas engine. The model was capable of predicting temperature dependence on OSC with H2, CO and CH4 as reductants. Also, the effects of oxygen concentration and space velocity on the amount of OSC were captured by the model. The validated OSC model was applied to simulate lean breakthrough phenomena with varied space velocities and oxygen concentrations. It is found that OSC during lean breakthrough is not a constant for a particular TWC catalyst and is dependent on space velocity and oxygen concentration. Specifically, breakthrough time exhibits a non-linear, inverse correlation to oxygen flux.
Technical Paper

Improved Techniques in Intake Acoustic System Modeling of a Supercharged Engine

2017-06-05
2017-01-1790
Vehicle noise emission requirements are becoming more stringent each passing year. Pass-by noise requirement for passenger vehicles is now 74 dB (A) in some parts of the world. The common focus areas for noise treatment in the vehicle are primarily on three sub-systems i.e., engine compartment, exhaust systems and power train systems. Down- sizing and down- speeding of engines, without compromising on power output, has meant use of boosting technologies that have produced challenges in order to design low-noise intake systems which minimize losses and also meet today’s vehicle emission regulations. In a boosted system, there are a variety of potential noise sources in the intake system. Thus an understanding of the noise source strength in each component of the intake system is needed. One such boosting system consists of Turbo-Super configuration with various components, including an air box, supercharger, an outlet manifold, and an intercooler.
Technical Paper

Diesel Engines Gear Whine: Production Plant Perspective

2017-06-05
2017-01-1809
Engine noise is one of the significant aspects of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues, which is considered objectionable and impacts the customer’s perception of the product quality. Gear whine could result due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. This includes quick overview of the measurement process, test cell environment, noise acceptance criteria considerations. A gear whine case study is presented based on the data collected in the test cell at the engine plant. Gear whine data acquired on current product and next generation of prototype engines is analyzed and presented. This paper concludes by highlighting the lessons learned from the case study.
Technical Paper

Concept Analysis and Initial Results of Engine-Out NOx Estimator Suitable for on ECM Implementation

2016-04-05
2016-01-0611
The interest for NOx estimators (also known as virtual sensors or inferential sensors) has increased over the recent years due to benefits attributed to cost and performance. NOx estimators are typically installed to improve On-Board Diagnostics (OBD) monitors or to lower bill of material costs by replacing physical NOx sensors. This paper presents initial development results of a virtual engine-out NOx estimator planned for the implementation on an ECM. The presented estimator consists of an airpath observer and a NOx combustion model. The role of the airpath observer is to provide input values for the NOx combustion model such as the states of the gas at the intake and exhaust manifolds. It contains a nonlinear mean-value model of the airpath suitably transformed for an efficient and robust implementation on an ECM. The airpath model uses available sensory information in the vehicle to correct predictions of the gas states.
Technical Paper

Drive by Noise System and Corresponding Facility Upgrades for Test Efficiency, Data Quality and Customer Satisfaction

2011-05-17
2011-01-1611
An existing pass by noise data acquisition system was upgraded to provide the sophisticated data analysis techniques and test site efficiency required to comply with the current and future drive by noise regulations. Use of six sigma tool such as voice of the customer helped in defining the customer requirements which were then translated into the desired engineering characteristics using QFD. Pugh concept matrix narrowed down the best option suitable for the test site modifications taking into account the critical constraints such as test complexity, system cost & transparency to the existing drive by noise setup. Features of the new system include data telemetry, frequency analysis, portability and efficient data management through the use of advanced data acquisition system. Wireless mode of the data transmission helped significantly avoid most of the test site modifications, which in turn helped to reduce the overall system implementation cost.
Technical Paper

High-Performance Grid Computing for Cummins Vehicle Mission Simulation: Architecture and Applications

2011-09-13
2011-01-2268
This paper presents an extension of our earlier work on Cummins Vehicle Mission Simulation (VMS) software. Previously, we presented VMS as a Windows based analysis tool to simulate vehicle missions quickly and to gauge, communicate, and improve the value proposition of Cummins engines to customers. We have subsequently extended this VMS architecture to build a grid-computing platform to support high volume of simulation needs. The building block of the grid-computing version of VMS is an executable file that consists of vehicle and engine simulation models compiled using Real Time Workshop. This executable file integrates MATLAB and Simulink with Java, XML, and JDBC technologies and interacts with the MySQL database. Our grid consists of a cluster of twenty Linux servers with quad-core processors. The Sun Grid Engine software suite that administers this cluster can batch-queue and execute 80 simulations concurrently.
Technical Paper

Cylinder Deactivation for Increased Engine Efficiency and Aftertreatment Thermal Management in Diesel Engines

2018-04-03
2018-01-0384
Diesel engine cylinder deactivation (CDA) can be used to reduce petroleum consumption and greenhouse gas (GHG) emissions of the global freight transportation system. Heavy duty trucks require complex exhaust aftertreatment (A/T) in order to meet stringent emission regulations. Efficient reduction of engine-out emissions require a certain A/T system temperature range, which is achieved by thermal management via control of engine exhaust flow and temperature. Fuel efficient thermal management is a significant challenge, particularly during cold start, extended idle, urban driving, and vehicle operation in cold ambient conditions. CDA results in airflow reductions at low loads. Airflow reductions generally result in higher exhaust gas temperatures and lower exhaust flow rates, which are beneficial for maintaining already elevated component temperatures. Airflow reductions also reduce pumping work, which improves fuel efficiency.
Technical Paper

Application of Artificial Neural Networks to Aftertreatment Thermal Modeling

2012-04-16
2012-01-1302
Accurate estimation of catalyst bed temperatures is very crucial for effective control and diagnostics of aftertreatment systems. The architecture of most aftertreatment systems contains temperature sensors for measuring the exhaust gas temperatures at the inlet and outlet of the aftertreatment systems. However, the temperature that correctly reflects the temperature of the chemical reactions taking place on the catalyst surface is the catalyst bed temperature. From the Arrhenius relationship which governs the chemical reaction kinetics occurring in different aftertreatment systems, the rate of chemical reaction is very sensitive to the reaction temperature. Considerable changes in tailpipe emissions can result from small changes in the reaction temperature and robust emissions control systems should be able to compensate for these changes in reaction temperature to achieve the desired tailpipe emissions.
Technical Paper

Experimental Investigation of the Oil Pressure Regulator Buzz Noise on Diesel Engines

2013-05-13
2013-01-1903
Due to increasing expectations for gasoline like sound quality, today's diesel engines for light and medium duty automotive markets needs to be carefully designed from NVH perspective. Typical engine operating conditions such as low idle, light tip in, tip out demand more attention as they are more prone to generating sound quality concerns. Any abrupt change in the noise signature may be perceived as a sign of malfunction and could have a potential to generate warranty claims. In this paper, an experimental investigation was carried out to determine the root cause of the transient oil pressure regulator buzz noise which occurred during no load transients at low engine speeds. The root cause of the objectionable noise was found to be associated with the impacts of the regulator plunger on the valve seat at certain engine speeds. Noise and vibration diagnostic tests confirmed that the plunger impacts at the seat caused the objectionable buzz noise.
Technical Paper

Finite Element Method Based Fatigue Analysis of a Gray Cast Iron Component

2013-04-08
2013-01-1205
Good understanding and accurate prediction of component fatigue strength is crucial in the development of modern engine. In this paper a detail analysis was conducted on an engine component made of gray cast iron with finite element method to evaluate the fatigue strength. This component has notches that cause local stress concentration. It is well known that fatigue behavior of a notch is not uniquely defined by the local maximum stress but depends on other factors determined by notch geometry and local stress distribution. The component fatigue strength was underestimated by only considering the stresses on the notch surface for fatigue life prediction. The critical distance approach was adopted to predict the fatigue behavior of this component. Good agreements are observed between predicted life by the critical distance method and actual field data.
Technical Paper

Durability Test Suite Optimization Based on Physics of Failure

2018-04-03
2018-01-0792
Dynamometer (dyno) durability testing plays a significant role in reliability and durability assessment of commercial engines. Frequently, durability test procedures are based on warranty history and corresponding component failure modes. Evolution of engine designs, operating conditions, electronic control features, and diagnostic limits have created challenges to historical-based testing approaches. A physics-based methodology, known as Load Matrix, is described to counteract these challenges. The technique, developed by AVL, is based on damage factor models for subsystem and component failure modes (e.g. fatigue, wear, degradation, deposits) and knowledge of customer duty cycles. By correlating dyno test to field conditions in quantifiable terms, such as customer equivalent miles, more effective and efficient durability test suites and test procedures can be utilized. To this end, application of Load Matrix to a heavy-duty diesel engine is presented.
Technical Paper

Developing Diesel Engines to Meet Ultra-low Emission Standards

2005-11-01
2005-01-3628
The modern diesel engine is used around the world to power applications as diverse as passenger cars, heavy-duty trucks, electrical power generators, ships, locomotives, agricultural and industrial equipment. The success of the diesel engine results from its unique combination of fuel economy, durability, reliability and affordability - which drive the lowest total cost of ownership. The diesel engine has been developed to meet the most demanding on-highway emission standards, through the introduction of advanced technologies such as: electronic controls, high pressure fuel injection, and cooled exhaust gas recirculation. The standards to be introduced in the U.S. in 2007 will see the introduction of the Clean Diesel which will achieve near-zero NOx and particulate emissions, while retaining the customer values outlined above.
Technical Paper

Development of a Compression Ignition Heavy Duty Pilot-Ignited Natural Gas Fuelled Engine for Low NOx Emissions

2004-10-25
2004-01-2954
A heavy-duty compression ignition engine using EGR and pilot-ignited directly injected natural gas fueling was calibrated for low NOx emissions. A Cummins ISX engine using cooled EGR was fitted with a Westport HPDI™ fuel system and an oxidation catalyst. The base engine hardware was modified to increase EGR rates (up to 40%). The engine, rated at 336 kW (450 hp) and 2236Nm (1650 ft-lbs), was calibrated and tested over steady state and transient test cycles. Steady state testing over the ESC 13-mode test cycle resulted in weighted composite NOx emissions of 0.36 g/bhp-hr and particulate matter emissions of 0.04 g/bhp-hr. Transient testing over the US EPA specified FTP cycle resulted in average NOx emissions of 0.6 g/bhp-hr and PM emissions of 0.03 g/bhp-hr.
Technical Paper

The Prediction of Connecting Rod Fretting and Fretting Initiated Fatigue Fracture

2004-10-25
2004-01-3015
The influence of big-end bore fretting on connecting rod fatigue fracture is investigated. A finite element model, including rod-bearing contact interaction, is developed to simulate a fatigue test rig where the connecting rod is subjected to an alternating uniaxial load. Comparison of the model results with a rod fracture from the fatigue rig shows good correlation between the fracture location and the peak ‘Ruiz’ criterion, rather than the peak tensile stress location, indicating the potential of fretting to initiate a fatigue fracture and the usefulness of the ‘Ruiz’ criterion as a measure of location and severity. The model is extended to simulate a full engine cycle using pressure loads from a bearing EHL analysis. A fretting map and a ‘Ruiz’ criterion map are developed for the full engine cycle, giving an indication of a safe ‘Ruiz’ level from an existing engine which has been in service for more than 5 years.
Technical Paper

Impact of Chemical Contaminants on Stoichiometric Natural Gas Engine Three-Way Catalysts with High Mileage History

2022-03-29
2022-01-0542
Stoichiometric natural gas engines with three-way catalysts emit less NOx and CH4 due to their higher efficiency compared to lean-burn natural gas engines. Although hydrothermal aging of three-way catalysts has been extensively studied, a deeper understanding beyond hydrothermal aging is needed to explain real-world performance, especially for natural gas engines with near-zero NOx emissions. In this investigation, field-aged three-way catalysts were characterized to identify the contribution of chemical aging to their overall performance. It was found that the sulfur species on the field-aged TWCs were entirely distributed along the catalyst length, showing a decreasing trend, whereas phosphorous contamination was mainly observed at the inlet section of the three-way catalysts, and the phosphorous concentration declined sharply along the axial length.
Technical Paper

Advanced Tire to Vehicle Connectivity for Safety and Fuel Economy of Automated Heavy-Duty Trucks

2022-03-29
2022-01-0881
Safety, fuel economy and uptime are key requirements for the operation of heavy-duty line-haul trucks within a fleet. With the penetration of connectivity and automation technologies, energy optimal and safe operation of the trucks are further improved through Advanced Driver Assistance System (ADAS) features and automated technologies as in truck platooning. Understanding the braking capability of the vehicle is very important for optimal ADAS and platooning control system design and integration. In this paper, the importance of tire connectivity and tire conditions on truck stopping distance are demonstrated through testing. The test data is further utilized to develop tire models for integration in an optimal vehicle automation for platooning. New ways to produce and use the tire related information in real-time optimal control of platooning trucks are proposed and the contribution of tire information in fuel economy is quantified through simulations.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Better performance in fine-grain steel for transmission

2023-02-10
2022-36-0033
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening.
X